(Schubert, Werner, Zinner \& Werner, 1983) and $\mathrm{P}=\mathrm{O} 1 \cdot 488, \mathrm{P}-\mathrm{O} 1 \cdot 595 \AA$ (Fernanda, Carvalho, Pombeiro, Hughes \& Richards, 1987).

FE acknowledges support from the Department of Chemistry, Simon Fraser University and NSERC (infrastructure).

References

Fernanda, M., Carvalho, N. N., Pombeiro, A. J. L., Hughes, D. L. \& Richards, R. L. (1987). J. Organomet. Chem. 335, 23-26.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Schubert, U., Werner, R., Zinner, L. \& Werner, H. (1983). J. Organomet. Chem. 253, 363-374.

Structure of $\mathbf{D i}-\mu$-chloro-bis[trichlorobis(tetrahydrofuran)uranium(IV)]

By J. Rebizant, M. R. Spirlet* and C. Apostolidis
Joint Research Centre, Institute for Transuranium Elements, Postfach 2340, D-7500 Karlsruhe, Germany
G. Van den Bossche \dagger
Cristallographie B5, Université de Liège au Sart Tilman, B-4000 Liège, Belgium

and B. Kanellakopulos,
Institut für Heisse Chemie, Kernforschungszentrum, Karlsruhe, Postfach 3640, D-7500 Karlsruhe, Germany
(Received 12 July 1990; accepted 2 October 1990)

Abstract. $\left[\left\{\mathrm{UCl}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{2}\right\}_{2}\right], \quad M_{r}=1048 \cdot 12$, monoclinic, $\quad P 2_{1} / c, \quad a=10.756(5), \quad b=12.372(5), \quad c=$ $12 \cdot 293$ (6) $\AA, \beta=113 \cdot 31$ (3) ${ }^{\circ}, V=1502$ (2) $\AA^{3}, Z=$ $2, D_{x}=2.317 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Mo $K \bar{\alpha})=0.71073 \AA, \mu=$ $109 \cdot 486 \mathrm{~cm}^{-1}, \quad F(000)=960, \quad T=295(1) \mathrm{K}, \quad R=$ 0.037 for 1287 observed unique reflections. The dimeric complex, in which two $\mathrm{UCl}_{4}(\mathrm{THF})_{2}$ moieties are bridged by two Cl atoms, lies on a centre of symmetry. Each U atom of the dimer is seven coordinated in a pentagonal-bipyramidal geometry. The maximum deviation from the best plane through the U atom and its five equatorial ligand atoms $\left[\mathrm{Cl}(1), \mathrm{Cl}(1)^{\mathrm{i}}, \mathrm{Cl}(4)\right.$ and the O atoms of the two THF] is 0.05 (1) $\AA . \mathrm{Cl}(2)-\mathrm{U}-\mathrm{Cl}(3)$ is almost linear and perpendicular to this plane.

Experimental. The title complex was prepared by reaction of uranium tetrachloride with tetrahydrofuran in n-pentane at room temperature. Extraction and recrystallization with a 10% THF solution in n-pentane gave single crystals. The selected specimen $(0.30 \times 0.25 \times 0.30 \mathrm{~mm})$ was sealed in a thin-walled glass capillary under an inert atmosphere. EnrafNonius CAD-4 diffractometer was used with graphite-monochromated radiation. Unit-cell dimensions and standard deviations were obtained by least-squares fit to 25 reflections in the range $16-30^{\circ}$

[^0](2 θ). The space group was unequivocally established from systematic absences. Intensity data were collected by $\theta-2 \theta$ scans in the range $4<2 \theta<46^{\circ}, h 0 \rightarrow$ $12, k-14 \rightarrow 14, l-14 \rightarrow 14$. In total 3829 reflections were measured to give 2081 unique reflections ($R_{\text {int }}=$ $0 \cdot 023$) of which 1287 were considered observed $[I \geq$ $3 \sigma(I)$] and used in refinement ($h 0 \rightarrow 10, k 0 \rightarrow 12, l$ $-12 \rightarrow 11$). Intensities of three standard reflections were measured at 30 min intervals, anistropic decay correction was applied (total decay 3.9%). The data were corrected for Lorentz and polarization effects. ψ scans were used for the absorption correction (North, Phillips \& Mathews, 1968), the min. and max. relative transmission factors were 73.32 and 99.95% respectively. The structure was solved by direct methods and refined by full-matrix leastsquares techniques which minimized $\sum w(\Delta F)^{2} ; w=$ $1 /\left[\sigma\left(F_{o}\right)\right]^{2}$ with $\sigma\left(F_{o}\right)=\sigma\left(F_{o}^{2}\right) / 2 F_{o}$ and $\sigma\left(F_{o}^{2}\right)=\left[\sigma^{2}(I)\right.$ $\left.+(A)^{2}\right]^{1 / 2} / \mathrm{Lp}$ where A, the ignorance factor, is 0.06 . Anisotropic temperature factors were used for non-H atoms. A secondary-extinction coefficient was refined to $g=8.9 \times 10^{-8}\left\{F_{c}=F_{c} /\left[1+g\left(F_{c}\right)^{2} \mathrm{Lp}\right]\right\}$. The final discrepancy indices were $R=0.037, w R=0.066, S=$ $2 \cdot 09$. 137 variables were refined with maximum shift/ e.s.d. in final cycle 0.03 H atoms were included in final structure factor calculations in idealized positions with $B_{\text {iso }}=4 \AA^{2}$. Largest positive and negative peaks on final $\Delta \rho$ map had heights $+1 \cdot 16$ and $-1.39 \mathrm{e} \AA^{-3}$, respectively, with all substantial peaks close to U. Atomic scattering factors and © 1991 International Union of Crystallography

Table 1. Fractional coordinates and equivalent isotropic thermal parameters (\AA^{2}) with e.s.d.'s in parentheses

$$
\begin{gathered}
B_{\mathrm{eq}}=(4 / 3)\left[a^{2} \beta_{11}+b^{2} \beta_{22}+c^{2} \beta_{33}+(2 a b \cos \gamma) \beta_{12}+(2 a c \cos \beta) \beta_{13}\right. \\
\left.+(2 b c \cos \alpha) \beta_{23}\right] .
\end{gathered}
$$

	x	y	z	$B_{\text {eq }}$
U	$0.18668(5)$	$0.05032(4)$	$0.16572(4)$	$3.22(2)$
$\mathrm{Cl}(1)$	$0.0263(5)$	$-0.1236(3)$	$0.0379(4)$	$6.0(1)$
$\mathrm{Cl}(2)$	$0.3314(5)$	$0.0315(4)$	$0.0452(4)$	$5.8(1)$
$\mathrm{Cl}(3)$	$0.0347(4)$	$0.0728(4)$	$0.2799(4)$	$5.9(1)$
$\mathrm{Cl}(4)$	$0.4010(5)$	$0.1001(4)$	$0.3520(4)$	$6.8(1)$
$\mathrm{O}(1)$	$1.1998(9)$	$0.2459(9)$	$0.1586(8)$	$4.9(3)$
$\mathrm{O}(2)$	$0.266(1)$	$-0.120(1)$	$0.2650(9)$	$5.2(3)$
$\mathrm{C}(1)$	$0.234(2)$	$0.305(2)$	$0.069(1)$	$8.2(5)$
$\mathrm{C}(2)$	$0.248(2)$	$0.423(1)$	$0.117(1)$	$5.7(4)$
$\mathrm{C}(3)$	$0.275(2)$	$0.413(2)$	$0.244(2)$	$6.4(5)$
$\mathrm{C}(4)$	$0.192(2)$	$0.318(1)$	$0.254(1)$	$6.4(4)$
$\mathrm{C}(5)$	$0.248(3)$	$-0.155(2)$	$0.371(2)$	$13.1(9)$
$\mathrm{C}(6)$	$0.314(3)$	$-0.267(2)$	$0.402(3)$	$10.9(9)$
$\mathrm{C}(7)$	$0.355(3)$	$-0.285(2)$	$0.321(3)$	$16.0(9)$
$\mathrm{C}(8)$	$0.347(2)$	$-0.192(2)$	$0.238(2)$	$10.7(8)$

Table 2. Bond distances (\AA) and angles $\left({ }^{\circ}\right)$
(1) U coordination sphere

$\mathrm{U}-\mathrm{Cl}(1)$	2.816 (3)	$\mathrm{U}-\mathrm{O}(2)$	2.415 (9)
$\mathrm{U}-\mathrm{Cl}\left(1{ }^{\prime}\right)$	2.792 (3)	$\mathrm{U}-\mathrm{Cl}(2)$	2.550 (4)
$\mathrm{U}-\mathrm{O}(\mathrm{I})$	2.427 (9)	$\mathrm{U}-\mathrm{Cl}(3)$	$2 \cdot 556$ (4)
$\mathrm{U}-\mathrm{Cl}(4)$	$2 \cdot 600$ (3)		
$\mathrm{Cl}(2)-\mathrm{U}-\mathrm{Cl}(3)$	177.8 (1)	$\mathrm{O}(1)-\mathrm{U}-\mathrm{Cl}(4)$	75.6 (2)
$\mathrm{Cl}(1)-\mathrm{U}-\mathrm{Cl}\left(1^{\prime}\right)$	69.1 (1)	$\mathrm{Cl}(4)-\mathrm{U}-\mathrm{O}(2)$	75.5 (2)
$\mathrm{Cl}\left(11^{\prime}-\mathrm{U}-\mathrm{O}(1)\right.$	71.5 (2)	$\mathrm{O}(2)-\mathrm{U}-\mathrm{Cl}(1)$	68.3 (2)
(2) THF			
$\mathrm{O}(1)-\mathrm{C}(1)$	1.48 (2)	$\mathrm{O}(2)-\mathrm{C}(5)$	1.45 (2)
$\mathrm{C}(1)-\mathrm{C}(2)$	1.56 (2)	$\mathrm{C}(5)-\mathrm{C}(6)$	1.54 (3)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.48 (2)	$\mathrm{C}(6)-\mathrm{C}(7)$	1.26 (3)
$\mathrm{C}(3)-\mathrm{C}(4)$	1.51 (2)	$\mathrm{C}(7)-\mathrm{C}(8)$	1.52 (4)
$\mathrm{C}(4)-\mathrm{O}(1)$	$1 \cdot 50$ (1)	$\mathrm{C}(8)-\mathrm{O}(2)$	1.38 (2)
$\mathrm{U}-\mathrm{O}(1)-\mathrm{C}(1)$	$123 \cdot 7$ (7)	$\mathrm{U}-\mathrm{O}(2)-\mathrm{C}(5)$	125 (1)
$\mathrm{U}-\mathrm{O}(1)-\mathrm{C}(4)$	122.8 (7)	$\mathrm{U}-\mathrm{O}(2)-\mathrm{C}(8)$	125 (1)
$\mathrm{C}(4)-\mathrm{O}(1)-\mathrm{C}(1)$	113 (1)	$\mathrm{C}(8)-\mathrm{O}(2)-\mathrm{C}(5)$	110 (2)
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	101 (1)	$\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$	106 (2)
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	105 (1)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	104 (2)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	106 (1)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	117 (2)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{O}(1)$	101 (1)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{O}(2)$	102 (2)

Symmetry code: (i) $-x,-y,-z$.

Fig. 1. ORTEP (Johnson, 1965) drawing of the title compound with thermal ellipsoids at the 50% probability level.
is also observed here. The $\mathbf{U} \cdots \mathbf{U}^{1}$ distance of $4 \cdot 618$ (1) \AA and the average bridging $\mathrm{U}-\mathrm{Cl}$ distance of 2.804 (4) \AA are comparable to the values in $\mathrm{UO}_{2}{ }^{-}$ $\mathrm{Cl}_{2}(\mathrm{THF})_{2}$ (Rogers, Green \& Benning, 1986), respectively $4 \cdot 619$,(5) and $2.82(2) \AA$. The pentagonal bipyramidal geometry found for this compound is interesting because it is relatively uncommon in uranium(IV) complexes. Some of them have been characterized in the solid state: UBr_{4} (Taylor \& Wilson, 1974), which is a bromine-bridged polymer, the $\left[\mathrm{UF}_{7}\right]^{3-}$ anion in $\mathrm{K}_{3}\left[\mathrm{UF}_{7}\right]$ (Zachariasen, 1954), the $\left[\mathrm{UCl}_{3}\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CON}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}_{4}\right]^{+}$cation in $\left[\mathrm{UCl}_{3}-\right.$ $\left.\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CON}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}_{4}\right]\left[\mathrm{UCl}_{5}\left\{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CON}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2}\right\}\right]$
(Bagnall, Beddoes, Mills \& Xing-fu, 1982), the neutral complexes $\mathrm{U}(\mathrm{NCS})_{4}\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCON}\left(\mathrm{CH}_{3}\right)_{2}\right]_{3}$ (Bagnall, Xing-fu, Bombieri \& Benetollo, 1982) and $\mathrm{U}(\mathrm{NCS})_{4}\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{CON}\left(i-\mathrm{C}_{3} \mathrm{H}_{7}\right)_{2}\right]_{3}$ (Al-Daher, Bagnall, Benetollo, Polo \& Bombieri, 1986). The reduction in the coordination number around the uranium from eight $\left(\mathrm{UCl}_{4}\right)$ to seven (here) would result from the hindrance of the additional THF ligands with respect to Cl ligands.

References

Al-Daher, A. G. M., Bagnall, K. W., Benetollo, F., Polo, A. \& Bombieri, G. (1986). J. Less Common Met. 122, 167-173.
bagnall, K. W., Beddoes, R. L., Mills, O. S. \& Xing-fu, L. (1982). J. Chem. Soc. Dalton Trans. pp. 1361-1364.

Bagnall, K. W., Xing-fu, L., Bombieri, G. \& Benetollo, F. (1982). J. Chem. Soc. Dalton Trans. pp. 19-23.

Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version of 6 January 1983. EnrafNonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Rogers, R. D., Green, L. M. \& Benning, M. M. (1986). Lanthanide Actinide Res. 1, 185-193.
Taylor, J. C. \& Wilson, P. W. (1974). Acta Cryst. B30, 2664-2667.
Zachariasen, W. H. (1954). Acta Cryst. 7, 792-794.

Structure of Aqua-hexakis(μ_{2}-benzoato)-bis(methanol)- μ_{3}-oxo-triiron(III) Benzoate Ethanol Methanol Solvate

By Vincent M. Lynch, John W. Sibert, Jonathan L. Sessler and Brian E. Davis
Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX 78712, USA

(Received 19 July 1990; accepted 27 September 1990)

Abstract

Fe}_{3}(\mathrm{O})\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{6}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\) $\left[\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right]-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-\mathrm{CH}_{3} \mathrm{OH}(1 / 1 / 1), M_{r}=1191 \cdot 56$, triclinic, $\quad P \overline{1}, \quad a=11.591$ (3),$\quad b=13 \cdot 308$ (2),$\quad c=$ 20.154 (3) $\AA, \quad \alpha=96.910$ (12),$\quad \beta=96.95$ (2),$\quad \gamma=$ $114 \cdot 10(2)^{\circ}, \quad V=2767 \cdot 1(9) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.43 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=8.471 \mathrm{~cm}^{-1}$, Mo $K \alpha$ radiation, $\lambda=$ $0.7107 \AA, F(000)=1234, T=198 \mathrm{~K}, R=0.0522$ for 6252 reflections $\left[F_{o} \geq 4 \sigma\left(F_{o}\right)\right]$. The complex has nearly $D_{3 h}$ symmetry with two coordinated $\mathrm{CH}_{3} \mathrm{OH}$ molecules and one coordinated $\mathrm{H}_{2} \mathrm{O}$ molecule. The coordination around the Fe atoms is essentially octahedral. Each Fe atom lies slightly out of the plane of the O atoms of the bridging benzoates and is directed towards the $\mu_{3}-\mathrm{O}$ atom. The average $\mathrm{Fe}-\mathrm{O}$ distances are $1-907(2) \AA$ for the $\mu_{3}-\mathrm{O}$ atom and $2 \cdot 010$ (1) \AA for the benzoate O atoms.

Experimental. As a by-product of ongoing research related to the respiratory protein hemerythrin (Sessler, Sibert \& Lynch, 1990; Sessler, Hugdahl, Lynch \& Davis, 1990), complex (1), [$\mathrm{Fe}_{3}(\mathrm{O})$ $\left.\left(\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right)_{6}\left(\mathrm{CH}_{3} \mathrm{OH}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\left[\mathrm{O}_{2} \mathrm{CC}_{6} \mathrm{H}_{5}\right]-\mathrm{CH}_{3} \mathrm{OH}-$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, was synthesized. Orange crystals were obtained by slow evaporation of a methanol-ethanol (5:1) solution. The crystals quickly decomposed when taken out of the mother liquor, presumably due to the loss of methanol and/or ethanol solvate molecules.

The data crystal was an orange needle of approximate dimensions $0.13 \times 0.20 \times 0.41 \mathrm{~mm}$. The data 0108-2701/91/040866-04\$03.00
were collected on a Nicolet $P 3$ diffractometer, using graphite-monochromatized Mo $K \alpha$ radiation, and a Nicolet LT-2 low-temperature delivery system. Lattice parameters were obtained from the least-squares refinement of 42 reflections with $24 \cdot 4<2 \theta<30 \cdot 0^{\circ}$. Data were collected using the ω-scan technique (10 318 reflections, 9788 unique, $R_{\text {int }}=0.0134$), with a 2θ range from $4 \cdot 0-50^{\circ}$ in 2θ, over a $1.3^{\circ} \omega$ scan at $4-8^{\circ} \min ^{-1}(h=0 \rightarrow 12, k=-15 \rightarrow 15, l=-23 \rightarrow 23)$. Four reflections ($2 \overline{3} 3 ; \overline{2} 32 ; \overline{3} 3 \overline{2} ; \overline{3} 0 \overline{1})$ were remeasured every 96 reflections to monitor instrument and crystal stability. A smoothed curve of the intensities of these four reflections was used to scale the data. The scaling factor ranged from $0.968-1.03$. The data were also corrected for Lp effects and absorption. The absorption correction was based on crystal-face measurements with a minimium and maximum transmission factor range of $0.8291-0.9147$. The data reduction, absorption and decay correction were performed using SHELXTL-Plus (Sheldrick, 1987). Reflections having $F_{o}<4 \sigma\left(F_{o}\right)$ were considered unobserved (3536 reflections). The structure was solved by the direct methods and refined by fullmatrix least squares (Sheldrick, 1987). The non-H atoms were refined with anisotropic thermal parameters. The H atoms were obtained from a ΔF map and refined with isotropic thermal parameters. During the latter stages of refinement, the H atoms of the methanol C atoms (C60, C62, C2B) and the C atoms of the ethanol molecule (C2A, C3A) were idealized ($\mathrm{C}-\mathrm{H} 0.96 \AA$) with isotropic thermal parameters fixed at $1.2 \times U_{\text {eq }}$ of the relevant C atom. In all, a total of 858 paremeters were refined in blocks of 394 and 465 parameters with the scale factor being refined in each block. The function $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was minimized, where $w=1 /$ $\left[\sigma\left(F_{o}\right)\right]^{2}$ and $\sigma\left(F_{o}\right)=0 \cdot 5 k I^{-1 / 2}\left\{\left[\sigma(I)^{2}+(0 \cdot 02 I)^{2}\right\}^{1 / 2}\right.$. The intensity, I, is given by ($\left.I_{\text {peak }}-I_{\text {background }}\right) \times$ (scan rate); 0.02 is a factor to downweight intense reflections and to account for instrument instability and k is the correction due to Lp effects, absorption and decay. $\sigma(I)$ was estimated from counting statistics; $\sigma(I)=\left[\left(I_{\text {peak }}+I_{\text {background }}\right)^{1 / 2} \times(\right.$ scan rate $\left.)\right]$. Final $R=0.0522$ for 6252 reflections, $w R=0.0533\left(R_{\text {all }}=\right.$ $\left.0.0863, w R_{\text {all }}=0.0583\right)$ and a goodness of fit $=1.43$.
(C) 1991 International Union of Crystallography

[^0]: * On leave from the University of Liège, Belgium.
 \dagger To whom correspondence should be addressed.

